Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 42(9): 113133, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37708021

RESUMO

Visual stimuli that deviate from the current context elicit augmented responses in the primary visual cortex (V1). These heightened responses, known as "deviance detection," require local inhibition in the V1 and top-down input from the anterior cingulate area (ACa). Here, we investigated the mechanisms by which the ACa and V1 interact to support deviance detection. Local field potential recordings in mice during an oddball paradigm showed that ACa-V1 synchrony peaks in the theta/alpha band (≈10 Hz). Two-photon imaging in the V1 revealed that mainly pyramidal neurons exhibited deviance detection, while contextually redundant stimuli increased vasoactive intestinal peptide (VIP)-positive interneuron (VIP) activity and decreased somatostatin-positive interneuron (SST) activity. Optogenetic drive of ACa-V1 inputs at 10 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of V1-VIPs disrupted Aca-V1 synchrony and deviance detection in the V1. These results outline temporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.


Assuntos
Córtex Cerebral , Percepção Visual , Animais , Camundongos , Percepção Visual/fisiologia , Córtex Cerebral/metabolismo , Células Piramidais/metabolismo , Interneurônios/metabolismo , Optogenética , Peptídeo Intestinal Vasoativo/metabolismo
2.
Cereb Cortex ; 33(15): 9417-9428, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37310190

RESUMO

Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1)-a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence-a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations-and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that although basic adaptation to redundant stimuli was present early (50 ms) in layer 4 responses, DD emerged later (150-230 ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7 Hz) and high-gamma (70-80 Hz) oscillations in L2/3 and decreased beta oscillations (26-36 Hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, whereas "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.


Assuntos
Encéfalo , Córtex Visual , Animais , Camundongos , Vigília , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica
3.
bioRxiv ; 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37131642

RESUMO

Context modulates neocortical processing of sensory data. Unexpected visual stimuli elicit large responses in primary visual cortex (V1) -- a phenomenon known as deviance detection (DD) at the neural level, or "mismatch negativity" (MMN) when measured with EEG. It remains unclear how visual DD/MMN signals emerge across cortical layers, in temporal relation to the onset of deviant stimuli, and with respect to brain oscillations. Here we employed a visual "oddball" sequence - a classic paradigm for studying aberrant DD/MMN in neuropsychiatric populations - and recorded local field potentials in V1 of awake mice with 16-channel multielectrode arrays. Multiunit activity and current source density profiles showed that while basic adaptation to redundant stimuli was present early (50ms) in layer 4 responses, DD emerged later (150-230ms) in supragranular layers (L2/3). This DD signal coincided with increased delta/theta (2-7Hz) and high-gamma (70-80Hz) oscillations in L2/3 and decreased beta oscillations (26-36hz) in L1. These results clarify the neocortical dynamics elicited during an oddball paradigm at a microcircuit level. They are consistent with a predictive coding framework, which posits that predictive suppression is present in cortical feed-back circuits, which synapse in L1, while "prediction errors" engage cortical feed-forward processing streams, which emanate from L2/3.

4.
bioRxiv ; 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36865311

RESUMO

Visual processing is strongly influenced by context. Stimuli that deviate from contextual regularities elicit augmented responses in primary visual cortex (V1). These heightened responses, known as "deviance detection," require both inhibition local to V1 and top-down modulation from higher areas of cortex. Here we investigated the spatiotemporal mechanisms by which these circuit elements interact to support deviance detection. Local field potential recordings in mice in anterior cingulate area (ACa) and V1 during a visual oddball paradigm showed that interregional synchrony peaks in the theta/alpha band (6-12 Hz). Two-photon imaging in V1 revealed that mainly pyramidal neurons exhibited deviance detection, while vasointestinal peptide-positive interneurons (VIPs) increased activity and somatostatin-positive interneurons (SSTs) decreased activity (adapted) to redundant stimuli (prior to deviants). Optogenetic drive of ACa-V1 inputs at 6-12 Hz activated V1-VIPs but inhibited V1-SSTs, mirroring the dynamics present during the oddball paradigm. Chemogenetic inhibition of VIP interneurons disrupted ACa-V1 synchrony and deviance detection responses in V1. These results outline spatiotemporal and interneuron-specific mechanisms of top-down modulation that support visual context processing.

5.
Schizophr Bull ; 47(5): 1385-1398, 2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-33370434

RESUMO

Alterations in neocortical GABAergic interneurons (INs) have been affiliated with neuropsychiatric diseases, including schizophrenia (SZ). Significant progress has been made linking the function of a specific subtype of GABAergic cells, parvalbumin (PV) positive INs, to altered gamma-band oscillations, which, in turn, underlie perceptual and feedforward information processing in cortical circuits. Here, we review a smaller but growing volume of literature focusing on a separate subtype of neocortical GABAergic INs, somatostatin (SST) positive INs. Despite sharing similar neurodevelopmental origins, SSTs exhibit distinct morphology and physiology from PVs. Like PVs, SSTs are altered in postmortem brain samples from multiple neocortical regions in SZ, although basic and translational research into consequences of SST dysfunction has been relatively sparse. We highlight a growing body of work in rodents, which now indicates that SSTs may also underlie specific aspects of cortical circuit function, namely low-frequency oscillations, disinhibition, and mediation of cortico-cortical feedback. SSTs may thereby support the coordination of local cortical information processing with more global spatial, temporal, and behavioral context, including predictive coding and working memory. These functions are notably deficient in some cases of SZ, as well as other neuropsychiatric disorders, emphasizing the importance of focusing on SSTs in future translational studies. Finally, we highlight the challenges that remain, including subtypes within the SST class.


Assuntos
Ondas Encefálicas/fisiologia , Interneurônios/fisiologia , Neocórtex , Parvalbuminas/metabolismo , Esquizofrenia , Somatostatina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Humanos , Interneurônios/metabolismo , Neocórtex/metabolismo , Neocórtex/fisiopatologia , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...